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1. The plane problem of the effect of a load moving at constant velocity on the 
boundary of an ideal medium filling a half-space is considered. 

The relationship between the pressure p and the relative volume expansion e is assumed 

linear for both loading and unloading (Fig. 1). Relative to the pressure applied to the 
boundary it is assumed that it has a “front” moving at a velocity 

P 

L4 

D exceeding the speed of sound in the medium, it decreases mo- 

notonically behind the front, and the loading profile in a frame of 
reference moving together with the front does not change with time. 

The motion inthe medium is assumed steady. 

An abrupt dynamic effect on the soil (ground) can be modelled 

E approximately by such a scheme. Indeed, Fig. 1 corresponds to the 

Fig. 1 
compressibility diagram for soil fl]. Moreover, in models used to 
describe the soil r2, 31 the tangential stresses are considered bounded, 

and it can be assumed that the stress tensor is spherical as a satisfactory approximation 
in such problems. 

It should be added that nonuniform dynamical problems for an elastoplastic medium 
are quite difficult, and the soil parameters are not stable and have been studied only 

* 

slightly. All this affords a foundation for the application 
of simple schemes, and even more so, since the model of 

an incompressible ideal fluid was applied to certain prob- 
a X lems of soil dynamics [4]. 

The problem formulated above is useful also to clarify 

the limits of applicability of the approximate method, 

J proposed in [S], for constructing the wave field in a half- 

Fig. 2 
space of elastoplastic material in which the motion is 
caused by a load moving rapidly on the boundary. 

2. Let us place the origin of a rectangular coordinate system on the boundary, and let 
us direct the I -axis along the boundary, the y -axis into the depths of the medium(Fig. 2). 
Let p be the pressure, and a and u, respectively, the velocity projections on the I- and 
y -axes, and p the density. 

The pressure 
~=f(Dt+s) (2.1) 

is given at .v = 0 , where f (F,) is a known function such that 

f (D = 0 (4 < O), f ce, > 0, f’ (E) < 0 (E > 0) (2.2) 

and D > c, where c is the speed of sound in the medium. 
We shall assume the medium to be at rest ahead of the wave front being propagated 

at a velocity c corresponding to the loading branch of the p-e diagram, the material to 
be loaded instantaneously on the front, and unloading to occur immediately behind the 
front y = tg a (Dt + 5). 

It will later be verified that the constructed solution does not contradict these assump- 
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tions. 
From the mass and momentum conservation conditions we obtain on the front 

P = PC(-- u sin a + v co9 a) (y = (Dt + 5) tg a, sin a = c/D) (2.3) 

We consider the pressure and velocity to be zero behind, far from the front 

p = 0, u = 0, u = 0 (2 = cm) (2.4) 

In conformity with the assumptions made, we have within the angle a (Fig. 2), where 

the medium moves 
$+&+o, z+;;=o 

(2.5) 

The coefficient K corresponds to the unloading branch of the P- E diagram. We shall 

assume that 
c<D<c, (2.6) 

3, Considering the motion steady, i.e. the pressure and velocity to depend only on 

5 = Dt + z and y, we obtain from the first equation in (2.5) and the conditions (2.4) 

at infinity U= - PIPD (3.1) 

Taking account of this relationship and (2.6) and introducing the new variables 

~=Dt+s, q=ky(k= vi-LP/CiJ) (3.2) 

we reduce (2.5) to the form 
&p=-&+, 

a a PD 
qP= ---v 

3 k 

The Cauchy-Riemann equations will be satisfied if p and pD/kt, are considered the 
real and imaginary parts, respectively, of an analytic function Q (c) 

PD 
Q(C)=p+i~y (5 =E fi9) 

The function Q (6) should be regular within an angle of magnitude B in the complex 

i-plane ; hence, tg fi = k tg a. It follows from condition (2.1) 

Re Q = f (El (q = 0, E > 0) (3.3) 
Condition (2.3) reduces to . . 

Re Q = tg p Im Q (5 = &) (3.4) 

There results from condition (2.4) that Q should tend to zero when 6 tends to infinity 
while remaining within the angle. The formulated problem is solved by a well-known 

method [6]. The conformal mapping 

z= 6’ (v = n/B) (3.5) 

transforms the interior of the angle into the upper half-plane. 

It follows from condition (3.4) that Im ieiBQ = 0 

on the negative part of the real axis in the z-plane. 
This permits analytic continuation into the lower half-plane, and the problem reduces 

to finding a function which is zero at infinity, regular outside the positive part of the 
real axis, and satisfying the condition on it 

Q, = eizs Q- + 21 (t”) 

Here Q+ and Q_ are the upper and lower bounds of Q (z) , respectively. The solution 
of this problem, which is bounded at the origin and zero at infinity, is unique and has 
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the form [6] ,wv c0 
Q (4=7 s f p)dt 

0 
9-l/” (t - 2) 

Or returning to the variable 6 = & + iq, we obtain 

(3.6) 

4. The constructed solution satisfies the assumption made earlier that the medium is 
in the unloading stage behind the wave front. Indeed, @/at = D apjag ,therefore 

ap / a2 = PRe 0’ (%) 
It is easy to verify that co 

QW=-,&( ~*~~~~” 
0 

It hence follows that on the positive part of-the real axis 
ReQ’ = E-V’ (E) 

For F; = rC’a we have 00 
ein p 

ReQ’=p,, s 

rf ’ (z) dz 

o i+z’/r’ 

(4 i) 

(4.2) 

The condition 1’ (%) < 0 together with (4.1) and (4.2) and the evident relationship 

Q’ (w) = 0 yields that Re Q’ < 0 on the boundary, and by virtue of the known properties 
of harmonic functions, is negative everywhere, which indeed proves the assertion 
apratqo. 

6, Let us examine the case when c 4 D or 

B&i* vS=i (5.i) 

Taking account of (2.6), we note that in this case it is necessary to require that the 

unloading occurs under incompressibility conditions. 
To obtain the asymptotics let us rewrite Q (5) as 

QcO=-$1 
ce f (7) - f (4 - f’(r) (r-d dr + 

0 f - tm’ 

5 = ra”p, O<,<cp<B 

Retaining terms not higher than second order in fi in this equality, we obtain for the 

pressure p : 

p=f w++[fS ‘f,)dr-f(r)]-P’++) 

0 

ra 
~l(w)=~ r [$ Wd~--- f W] --&(4-3-r) rf’P) 

” 
Let us note that 

fi = kc / II + 0 (9 / D3) 

For the vertical velocity component v we have 
t 

(5.2) 

(5.3) 

(5.4) 
2’ 

p2=7; s 
0 
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It is seen from (5.2) and (5.4) that the corrections to the final quantities are of second 
order in p. 

The finite part of the pressure is a linear function of the angle, or equivalently, the 
depth, while the finite part of the vertical velocity is not dependent on the angle. 

It follows from (3.1) that the horizontal velocity is a quantity on the order of b 

u = - fip / kpc 
For large values of r we have 

It is assumed that the integral converges. It follows from these formulas that the pres- 
sure on the front always decreases as r-1. 

Let us compare the finite part of the pressure and velocity with the solution of the 
problem of motion in a semi-infinite rod of material described by a linear diagram for 
loading and incompressible for unloading. Motion is caused by the pressure applied to an 

endface at time ct = 0 and changing according to the law p = f (Dt). 
In this case we have for the velocity Dt 

u=& f Wdr s 0 

and the pressure on the front is given by the formula p = CPU. 
Taking into account that Dt = r, we note that the main terms of (5.2) and (5.4) agree 

with the formulas presented. This can be a foundation for utilizing one-dimensional 

problems to construct approximate solutions, as has been mentioned in [5]. 
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